Radioenge RA-S1 Rotator Controller

Radioenge

Radioenge LTDA
Rua Afonso Celso, 77
Curitiba - Paraná - Brasil
Phone (41) 3308-9155
rafael@radioenge.com.br
www.radioenge.com.br

November 23, 2018

Contents

1 Front Panel 2
2 Displays 3
3 Rear panel 4
4 Configuration Explained 5
4.1 Jumpers and Connections 5
4.2 Connecting the controller to the rotator 5
4.3 Firmware configuration and calibration 6
4.3.1 Observation for Rotators With Potentiometer Feedback 8
4.3.2 Observation for Rotators With Pulse Feedback 8
5 Configuration for PRO.SIS.TEL "D" Rotators (PST 61D, 71D, 2051D, 641D) 9
5.1 Jumpers and connections 9
5.2 Connecting the controller to the rotator 9
5.3 Firmware configuration and calibration 10
5.3.1 Observation for PRO.SIS.TEL 10
6 Configuration YAESU G-800, G1000, G2800 11
6.1 Jumpers and Connections 11
6.2 Connecting the controller to the rotator 11
6.3 Firmware configuration and calibration 12
6.3.1 Observation for Yaesu 12
7 Configuration for YAESU G450/G650 13
7.1 Jumpers and connections 13
7.2 Connecting the controller to the rotator 13
7.3 Firmware configuration and calibration 14
7.3.1 Observation for Yaesu 14
8 Configuration for Hy-Gain HAM-X, T2X, CD-45 15
8.1 Jumpers and connections 15
8.2 Connecting the controller to the rotator 15
8.3 Firmware configuration and calibration for Hy-Gain HAM-X, T2X, CD-45 16
9 Configuration for HyGain HDR-300 17
9.1 Jumpers and connections 17
9.2 Connecting the controller to the rotator 17
9.3 Firmware configuration and calibration 18
10 Configuration for M2 Orion 2800 (DC) 19
10.1 Jumpers and connections 19
10.2 Connecting the Controller to the Rotator 19
10.3 Firmware configuration and calibration 20
10.3.1 Observation for rotators with pulsed feedback 21
11 Configuration for AlfaSpid RAK Rotator 22
11.1 Jumpers and connections 22
11.2 Connecting the Controller to the Rotator 22
11.3 Firmware configuration and calibration 23
11.3.1 Observation for rotators with pulsed feedback 23
12 Point-and-shoot 24
12.1 Observation for rotators with pulsed feedback (ex: Orion G2800) 24
12.2 Observation for PRO.SIS.TEL 24
13 Setup menu 25
13.1 Soft Limits 25
13.2 Azimuth offset 26
13.3 Configuration menu 26
13.3.1 Defining the Dead-Time (menu "4.1 DT") 26
13.3.2 Setting the minimum speed (SP1) 26
13.3.3 Setting the maximum speed (SP2) 27
14 USB Virtual Com Port and Serial Setup 28
14.1 Connecting via DB-9F 28
14.2 Connecting via USB 28
14.3 Using the RA-S1 with softwares 28
14.3.1 Setup with N1MM 28
14.3.2 Setup with PSTRotator 29
14.3.3 Setup with DX4Win 30
14.3.4 Setup with Ham Radio Deluxe 30
15 Errors 31
15.1 Error E0 31
15.1.1 E0 Troubleshooting 31
15.2 Error E1 31
15.2.1 E1 Troubleshooting 31
16 Reset 32
17 Setup lock 32

1 Front Panel

The RA-S1 has four buttons that are used for configuration and to manually turn the rotator. It has two potentiometers POS and SPEED. POS is used to choose an angle to point-and-shoot and also choosing between options when the $R A-S 1$ is on the setup mode.

Figure 1: Front panel

SETUP

Button used to access and navigate through menus and sub-menus

GO

Button used to access sub-menus, define parameters and execute the point-and-shoot.

CCW

Button used to turn the rotator counter-clockwise.

CW

Button used to turn the rotator clockwise.

POS

Used to choose options on the menus also it is used to choose the azimuth for the point-and-shoot.

SPEED

Potentiometer that defines the speed that the rotator will turn. When turned the display 1 shows a value from 1 to 9 .

ON/OFF

Power switch

2 Displays

Figure 2: Display
The RA-S1 has two possible states that can change the function of the displays. The usual one called operating mode and the setup mode. They will be explained referring to the numbers showed on the Figure 2.

The displays on operating mode:
Display 1: The display 1 on the operating mode has two main functions. It is used to show the speed when the SPEED potentiometer is turned going from 1-9 and, when the controller is configured to rotators that has a braking system (Ex: HAM4, T2X) the display 1 indicates that the brake is released by showing "b".

Display 2: Show the direction the rotator is turning.
Displays 3, 4, 5: Shows the actual azimuth the rotator is. If the POS potentiometer is turned the display 1 and 2 will display "to" while the displays $3-4-5$ shows an angle between 0 and 359 for four seconds. If you press GO the controller will go to the chosen angle.

The displays on setup mode (details on configuration mode is on section 13):

Display 1 and 2: The display 1 on the setup mode is used to display the menu number going from 1 to 4 . By pressing GO you will enter on the selected menu. By entering a menu, the display 1 and 2 will show the menu and the sub-menu like "1.1 TYP", "1.2 POS", etc.

Displays 3, 4, 5: When turned it is possible to see the available options of each sub-menu.

3 Rear panel

Figure 3: Rear panel
1: Grounding Connection (Connected to the AC neutral)
2: Fuse (2A)
3: Power Supply
4: 110 V / 220 V Switch
5: Molex Mini-fit Jr (12 pin) Connector
6: DB-9F Connector - Serial RS-232
7: USB "B" Connector - Used for virtual serial COM and Firmware update.

4 Configuration Explained

This section explains the details and meanings of the controller configuration. If you want a detailed step-by-step configuration of the controller for your rotator go to its respective section.

To configure the RA-S1 for your rotator it is necessary to configure three internal jumpers and connect the correct wires from the transformer depending on the voltage your rotator require.

4.1 Jumpers and Connections

- The J5 jumper is inserted depending if the potentiometer of the rotator has the wiper grounded (Ex: HyGain HAM-IV or T2X) or not (Ex: Yaesu G-1000). If the wiper is grounded then the controller will read only one side of it (variable resistance). If the wiper is grounded then the J 5 must be jumped.
- The bornes P4 and P3 marked as AC and DC are used to connect the wires from the transformer. If the rotator is AC connect the transformer wires on $\mathbf{P 4}$, if it is DC connect the wires on P3.

It is possible to choose between 24 V and 36 V . For 24 V rotators, it is connected the 0 V wire (the one with the aerial fuse) and the 24 V wire (yellow). For 36 V rotators it is connected the 0 V and the 36 V wire (red).

- J4 and $\mathbf{J} \mathbf{2}$ are connected depending if your rotator is AC or DC. For AC rotators remove the jumper from $\mathbf{J} 2$ and connect it on $\mathbf{J 4}$ between the pin 2-3. If the rotator is DC $\mathbf{~} 2$ and $\mathbf{J 4}$ must be jumped.

Figure 4: Jumpers and cable connectors used for configuration

4.2 Connecting the controller to the rotator

When connecting the rotator to the controller, there are three main factors that will define the connections: the rotator power input (AC or DC), if it has a brake solenoid, and the positioning feedback (usually by pulses or a potentiometer). How to make those connections will be explained in the following tables referring to the RA-S1 Connector shown on the image below.

Figure 5: RA-S1 Connector

The Image 5 indicates the function of each pin of the RA-S1 connector.

Table 1: Connection DC Rotator / RA-S1

DC Rotator	RA-S1 Controller
Motor	M-CW
Motor	M-CCW

Table 2: Connection AC Rotator / RA-S1

AC Rotator	RA-S1 Controller
Winding 1	M-CW
Winding 2	M-CCW
Motor Ground	GND

For rotators with brake solenoid (Ex: Ham-IV) connect it to BRK on the RA-S1 Controller.
If the rotator is rotating to opposite directions that the one desired, for DC rotators invert the motor wires for AC rotators invert the winding wires.

Table 3: Rotator With Pulse Feedback / RA-S1

Rotator Pulses	RA-S1 Controller
Pulse Wire	PULSE
Pulse Wire	PULSE

Table 4: Rotator With Potentiometer Feedback
/ RA-S1

Rotator Potentiometer	RA-S1 Controller
Right End of Potentiometer	REF
Wiper	POT(WIPER)
Left End of Potentiometer	GND

4.3 Firmware configuration and calibration

After the Jumpers and Connections we need to do some setup on the controller program. To navigate on the menu, the SETUP button is used. To enter a menu or save a value at a sub-menu, the GO button is used and, for choosing an option, the POS potentiometer is used. To configure and calibrate the controller for the connected rotator, follow these steps.
(This is a general explanation, for more detailed information on connecting and configuring a specific rotator check the following chapters regarding common rotators configurations or contact Radioenge)

1. Hold the SETUP button until the controller displays "1 CAL"
2. Press the button GO to enter this menu. It should display "1.1 TYP". This menu 1.1 is to define if the rotator is AC or DC powered, if you turn the POS potentiometer you can see the options: AC, DC2, and DC1. AC is meant for AC rotators, DC2 is for 24 V DC or 36 V DC rotators, $\mathbf{D C} 1$ is meant for 12 V DC rotators.)
3. If your rotator is 24 V DC or 36 V DC, turn the potentiometer POS until it appears on the screen "1.1 DC2".

If your rotator is 12 V DC, turn the potentiometer POS until it appears on the screen "1.1 DC1".
If your rotator is AC powered, turn the potentiometer POS until it appears on the screen "1.1 AC".
Hold the button GO until the screen blinks to save the selected option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".

This sub-menu serves for defining what position feedback the rotator uses.
Turn the potentiometer POS to see the options. The options are:
"HYG" used for the potentiometer of Hy-Gain rotators or variable resistances,
"NO" used when for some reason the rotator don't have a feedback position,
"POT" used when rotator have a potentiometer as a feedback like Yaesu that varies from 0 to 100% of its value, "PST" used for Pro.Sis.Tel rotators or potentiometers that are used only partially (Ex: 1 turn of a 10 turn potentiometer), and
"PUL" when the rotator have pulses as position feedback.
Turn the potentiometer POS until the display shows the desired option.
Hold the button GO until the screen blinks to save this option.
5. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA". This sub-menu serves to tell the controller if the rotator has a brake. The possible options are yes or no.
Turn the potentiometer POS to select the desired option.
Hold the button GO until the screen blinks to save this option.

(This is the calibration part, if your rotator has a potentiometer as position feedback go to the next item, if it has pulses go to Item 10)

6. Press SETUP to go to the next sub-menu. It should be appearing "1.4 L". (On this sub-menu, the "L" on the screen means Left or Counter Clockwise.)
In order to calibrate the controller, press the CCW button and turn the rotator to a counter-clockwise position the closer to the end-of-track the better. Notice that the display will show a number, this number is the value of the voltage on the potentiometer's wiper and goes from 0 to 999 (0 to 100% of the potentiometer value) it's not the real azimuth. When moving counter-clockwise this number should descend.
After you turned to a point near the rotator's CCW end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer to set this azimuth.

With the real azimuth on the screen, hold GO until the screen blinks to save it.
7. Press SETUP to go to the next sub-menu. It should be appearing "1.5 R". (On this sub-menu, the " R " on the screen means Right or Clockwise.)
Now press the CW button and turn the rotator to a clockwise point, the closer to the clockwise end-of-track the better. Notice that the number shown on the screen should now be ascending.
After you turned to a point near the CW rotator's end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point and put this REAL azimuth on the controller screen using the POS potentiometer to insert this azimuth.
With the real azimuth on the screen, hold GO until the screen blinks to save the CW azimuth you inserted.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.6 $\mathbf{O L}$ ". In this sub-menu you need to tell if there was an overlap on the rotation you just made. (If when you moved the rotator to the right (CW) you turned the rotator more than 360° from the CCW point, there has been an overlap.)
If an overlap happened as described above, use the potentiometer POS to select the option YES.
If an overlap did not happen, select the option NO.
Hold the button GO until the screen blinks to save this option.
9. The configuration and calibration is now complete. Press setup multiple times to exit the configuration mode.
(Now the next ltems refer to pulsed feedback rotators, when the positioning selected on the menu 1.2 is PUL, it changes what the menus 1.4, 1.5 and 1.6 refers to.)
10. Press SETUP to go to the next sub-menu. It should be appearing "1.4 ANG". (On this sub-menu, ANG means Azimuth)

In order to calibrate the controller, verify the REAL AZIMUTH that the rotator (or the antenna) is pointing at. Set this azimuth by turning the potentiometer POS.
With the real azimuth on the screen, hold GO until the screen blinks to save the azimuth you inserted.
11. Press SETUP to go to the next sub-menu. It should be appearing "1.5 PHI". (On this sub-menu, PHI means Pulse-High)
Here you need to insert the how many pulses (divided by 100) your rotator generates on a full 360° rotation (usually it is on the rotator manual.).
Example 1: Your rotator generates 3960 pulses on a full 360° rotation; in this sub-menu (1.5 PHI) you should insert 39 with the POS potentiometer.
Example 2: Your rotator generates 10850 pulses on a full 360° rotation; in this sub-menu (1.5 PHI) you should insert 108 with the POS potentiometer.
Example 3: Your rotator generates 365 pulses on a full 360° rotation; in this sub-menu (1.5 PHI) you should insert 3 with the POS potentiometer.
Hold GO until the screen blinks to save the number you inserted.
12. Press SETUP to go to the next sub-menu. It should be appearing "1.6 PLO". (On this sub-menu, PLO means Pulse-Low)
Here you need to insert the how many pulses (tens and units) your rotator generates on a full 360° rotation (usually it is on the rotator manual).

Example 1: Your rotator gives 3960 pulses on a full 360° rotation; in this sub-menu (1.6 PLO) you should insert 60 with the POS potentiometer.
Example 2: Your rotator gives 10850 pulses on a full 360° rotation; in this sub-menu (1.6 PLO) you should insert 50 with the POS potentiometer.
Example 3: Your rotator gives 365 pulses on a full 360° rotation; in this sub-menu (1.6 PLO) you should insert 65 with the POS potentiometer.
Hold GO until the screen blinks to save the number you inserted.
13. The configuration and calibration is now complete. Press setup multiple times to leave the menu.

4.3.1 Observation for Rotators With Potentiometer Feedback

For the Pro.Sis. Tel configuration (menu "1.2 PST"), after the calibration the RA-S1 will only point-and-shoot to positions between the calibration points (azimuths inserted on menu 1.4 and 1.5). In order to reach further azimuths with the point-and-shoot, you must manually reach them using the CCW and CW buttons so the RA-S1 knows it's possible to go on further.
(It is extremely recommended to set Soft Limits when using the Pro.Sis.Tel rotator as it don't have mechanical end-courses, for that go to the page 25.)

With the Soft Limits ON the controller will only point-and-shoot to azimuths between the Soft Limits.

4.3.2 Observation for Rotators With Pulse Feedback

After calibrating you will notice that the point-and-shoot isn't working. This happens because the RA-S1 will only point-and-shoot to positions where you manually turned once with CW or CCW button.

This is made that way so the controller won't overturn or run onto the end-course.

5 Configuration for PRO.SIS.TEL "D" Rotators (PST 61D, 71D, 2051D, 641D)

5.1 Jumpers and connections

- Remove the jumper from J5.
- Place the yellow wire and the red wire with the in-line fuse holder on the P3 borne marked as DC.
- Insert the Jumpers on J2 and J4 as indicated in the figure.

Figure 6: Board scheme for PRO.SIS.TEL("D") rotators

5.2 Connecting the controller to the rotator

Connect the controller to the rotator following the table below.

Figure 7: RA-S1 Connector

Figure 8: RA-S1 Connector for Pro.Sis.Tel. Rotators

Table 5: Wire by wire - PRO.SIS.TEL to RA-S1

Rotator PST "D"	RA-S1 Controller
1	M-CCW (Black)
2	M-CW (Red)
3	POT (Yellow)
4	REF (Purple)
5	GND (Brown)

Table 6: PRO.SIS.TEL Rotator Truth Table

Pins	$\mathbf{1 0 k} \Omega$ Pot.	$\mathbf{5 0 0} \Omega$ Pot.
1 and 2 (Motor)	$4 \sim 19 \Omega$	$4 \sim 19 \Omega$
1 and 2 to GND	open	open
1-2 to 3-4-5	open	open
4 and 5	$\sim 10 \mathrm{k} \Omega$	$\sim 500 \Omega$
3 to 4 or 3 to 5	$<10 \mathrm{k} \Omega$	$<500 \Omega$

5.3 Firmware configuration and calibration

For navigating on the menu, the SETUP button is used. For entering a menu or saving a value at a sub-menu, the GO button is used and, for choosing an option, the POS potentiometer is used.

1. Hold the SETUP button until the controller displays "1 CAL"
2. Press the button GO to enter this menu. It should display "1.1 TYP".
3. If your rotator is the PST 61D, 2051D or 641D, turn the potentiometer POS until it appears on the screen " 1.1 DC1".
If your rotator is the PST 71D, turn the potentiometer POS until it appears on the screen "1.1 DC2".
Hold the button GO until the screen blinks to save this option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5. Turn the potentiometer POS until it appears on the screen "1.2 PST".

Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".
7. Turn the potentiometer POS until it appears on the screen "1.3 NO".

Hold the button GO until the screen blinks to save this option.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.4 L".

In order to calibrate the controller, press the CCW button to turn the rotator to a counter-clockwise point (recommended to turn the rotator visually to north if the system is adjusted for north-stop or south if south-stop).
You may notice as you turn the rotator CCW that the display shows a number that is descending, this number is not the azimuth. This number is the variation of the potentiometer and it ranges from $\mathbf{0}$ to $\mathbf{1 0 0 0}$ approximately. As the Pro.Sis. Tel comes with a 10 turn potentiometer each lap of it will be a physical lap of the PST Rotator and will result in a variation of 100 on the RA-S1 "1.4 and 1.5" sub-menu.
After you turned the rotator to your desired end-of-track (north or south), stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
9. Press SETUP to go to the next sub-menu. It should be appearing "1.5 R".

Press the CW button to turn the rotator to a clockwise point (recommended to turn the rotator 360° from the chosen point on the previous menu).
After you turned the rotator to the clockwise point stop the rotation and check the REAL azimuth of the antenna at this point and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save the CW azimuth you inserted.
10. Press SETUP to go to the next sub menu It should be appearing "1.6 OL". In this sub menu you need to tell if there was an overlap on the rotation you just made. (If when you moved the rotator to the right (CW) you turned the rotator more than 360° from the CCW point, there has been an overlap.)
If an overlap happened as described above, use the potentiometer POS to select the option YES.
If an overlap did not happen, select the option NO.
Hold the button GO until the screen blinks to save this option.
11. The configuration and calibration is now complete. Press setup multiple times to exit the configuration mode.

5.3.1 Observation for PRO.SIS.TEL

For the Pro.Sis. Tel configuration (menu "1.2 PST"), after the calibration the RA-S1 will only point-and-shoot to positions between the calibration points (azimuths inserted on menu 1.4 and 1.5). In order to reach further azimuths with the point-and-shoot, you must manually reach them using the CCW and CW buttons so the RA-S1 knows it's possible to go there.
(It is extremely recommended to set Soft Limits when using the Pro.Sis. Tel rotator as it don't have mechanical end-courses, for that go to the page 25.)

With the Soft Limits ON the controller will only point-and-shoot to azimuths between the Soft Limits.

6 Configuration YAESU G-800, G1000, G2800

6.1 Jumpers and Connections

- Remove the jumper from J5.
- Place the yellow wire and the red wire with the in-line fuse holder on the P3 borne marked as DC.
- Insert the Jumpers on J2 and J4 as indicated in the figure.

Figure 9: Board scheme for YAESU G-800, G1000, G2800 rotators.

6.2 Connecting the controller to the rotator

Connect the controller to the rotator following the table below.

Figure 10: RA-S1 Connector

Figure 11: RA-S1 Connector for Yaesu DC Rotators

Table 7: Wire by wire - YAESU / RA-S1

YAESU G-800/G-1000/G-2800	RA-S1 Controller
1	REF - Purple
2	POT - Yellow
3	GND - Brown
4	M-CW - Red
5	M-CCW - Black

6.3 Firmware configuration and calibration

For navigating on the menu, the SETUP button is used. For entering a menu or saving a value at a sub-menu, the GO button is used and, for choosing an option, the POS potentiometer is used.

1. Hold the SETUP button until the controller displays "1 CAL"
2. Press the button GO to enter this menu. It should display "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 DC2".

Hold the button GO until the screen blinks to save this option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5. Turn the potentiometer POS until it appears on the screen "1.2 POT".

Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu It should be appearing "1.3 BRA".
7. Turn the potentiometer POS until it appears on the screen "1.3 NO".

Hold the button GO until the screen blinks to save this option.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.4 L".

In order to calibrate the controller, press the CCW button and turn the rotator to a counter-clockwise point (the closer to the end-of-track- the closer to 0 on the display -, the better).
You may notice as you turn the rotator CCW that the display shows a number that is descending, this number is not the azimuth. This number is the variation of the potentiometer and it ranges from $\mathbf{0}$ to $\mathbf{1 0 0 0}$ approximately, meaning $\sim \mathbf{0}$ is the CCW rotator's end-of-track and ~ 1000 is the CW rotator's end-of-track. These values can be higher for the CCW end of track or lower for the CW end-of-track depending on the wire resistance.

After you turned to a point near the rotator's CCW end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
9. Press SETUP to go to the next sub-menu. It should be appearing "1.5 R".

In order to calibrate the controller, press the CW button and turn the rotator to a point to the right (the closer to the end-of-track - the closer to 1000 on the display -, the better).
After you turned to a point near the CW rotator's end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point and put this REAL azimuth on the controller screen using the POS potentiometer.

With the real azimuth on the screen, hold GO until the screen blinks to save the CW azimuth you inserted.
10. Press SETUP to go to the next sub-menu. It should be appearing "1.6 OL". In this sub-menu you need to tell if there was an overlap on the rotation you just made. (If when you moved the rotator to the right (CW) you turned the rotator more than 360° from the CCW point, there has been an overlap.)
If an overlap happened as described above, use the potentiometer POS to select the option YES.
If an overlap did not happen, select the option NO.
Obs: If you calibrated from the CCW end-of-track until the CW end-of-track, select the option "YES" because those Yaesu rotators have 90° overlap.
Hold the button GO until the screen blinks to save this option.
11. The configuration and calibration is now complete. Press setup multiple times to exit the configuration mode.

6.3.1 Observation for Yaesu

If you calibrated from the CCW end-of-track to the CW end-of-track, you may notice when you exited the menu that there is a point on the display on the right side of the angle, this point means that the rotator is on the overlap.

7 Configuration for YAESU G450/G650

7.1 Jumpers and connections

- Remove the jumper J5.
- Place the yellow wire and the red wire with the aerial fuse on the borne P4 marked as AC as shown on the picture.
- Remove the jumper from $\mathbf{~} 2 \mathbf{2}$ and insert it on $\mathbf{J} 4$ as shown on the picture.

Figure 12: Board scheme for YAESU G450/G650

7.2 Connecting the controller to the rotator

Connect the controller to the rotator following the table below.

Figure 13: Board scheme for YAESU G450/G650

Table 8: Wire by wire - YAESU

Rotator YAESU G450/G650	RA-S1 Controller
1	REF
2	POT
3	GND
4	M-CW
5	M-CCW
6	GND

7.3 Firmware configuration and calibration

1. Hold the SETUP button until the controller displays "1 CAL"
2. Press the button GO to enter this menu. It should be displaying "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 AC". Hold the button GO until the screen blinks to save this option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5. Turn the potentiometer POS until it appears on the screen "1.2 POT".

Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".

Turn the potentiometer POS until it appears on the screen "1.3 NO".
Hold the button GO until the screen blinks to save this option.
7. Press SETUP to go to the next sub-menu. It should be appearing "1.4 L".

In order to calibrate the controller, press the CCW button to turn the rotator to a counter-clockwise point (the closer to the end-of-track- the closer to 0 on the display -, the better).
You may notice as you turn the rotator CCW that the display shows a number that is descending, this number is not the azimuth. This number is the variation of the potentiometer and it ranges from $\mathbf{0}$ to $\mathbf{1 0 0 0}$ approximately, meaning ~ 0 is the CCW rotator's end-of-track and ~ 1000 is the CW rotator's end-of-track. These values can be higher for the CCW end of track or lower for the CW end-of-track depending on the wire resistance.
After you turned to a point near the rotator's CCW end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.5 R".

In order to calibrate the controller, press the CW button to turn the rotator to a point to the right (the closer to the end-of-track - the closer to 1000 on the display -, the better).
After you turned to a point near the CW rotator's end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save the CW azimuth you inserted.
9. Press SETUP to go to the next sub-menu. It should be appearing "1.6 OL". In this sub-menu you need to tell if there was an overlap on the rotation you just made. (If when you moved the rotator to the right (CW) you turned the rotator more than 360° from the CCW point, there has been an overlap.)
If an overlap happened as described above, use the potentiometer POS to select the option YES.
If an overlap did not happen, select the option NO.
Obs: If you calibrated from the CCW end-of-track until the CW end-of-track, select the option "YES" because those Yaesu rotators have 90° overlap.
Hold the button GO until the screen blinks to save this option.
10. The configuration and calibration is now complete. Press setup multiple times to exit the configuration mode.

7.3.1 Observation for Yaesu

If you calibrated from the CCW end-of-track to the CW end-of-track, you may notice when you exited the menu that there is a point on the display on the right side of the angle, this point means that the rotator is on the overlap.

8 Configuration for Hy-Gain HAM-X, T2X, CD-45

8.1 Jumpers and connections

- Insert the jumper on J5.
- Place the yellow wire and the red wire with the aerial fuse on the borne $\mathbf{P 4}$ marked as AC.
- Remove the jumper from J2 and insert it on J4 as shown on the picture.

Figure 14: Board scheme for HAM-X, T2X, CD-45 rotators

8.2 Connecting the controller to the rotator

Connect the controller to the rotator following the table below.

Figure 15: RA-S1 Connector

Figure 16: RA-S1 Connector for HAM-X, T2X, CD-45* Rotators

Table 9: Wire by Wire

HyGain Rotator	RA-S1 Controller
1	GND (Brown)
2	BRK (White) / *N/C for CD-45
3	POT (Yellow)
4	CAP (Purple)
5	M-CCW (Black)
6	M-CW (Red)
7	N/C
8	CAP (Green)

8.3 Firmware configuration and calibration for Hy-Gain HAM-X, T2X, CD-45

1. Hold the SETUP button until the controller displays " 1 CAL"
2. Press the button GO to enter this menu. It should be displaying "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 AC". Hold the button GO until the screen blinks to save this option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5. Turn the potentiometer POS until it appears on the screen "1.2 HYG".

Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".
7. If your Rotator is the Hy Gain HAM-X or T2X turn the potentiometer POS until it appears on the screen "1.3 YES".
8. If your Rotator is the Hy-Gain CD-45 turn the potentiometer POS until it appears on the screen "1.3 NO".

Hold the button GO until the screen blinks to save this option.
9. Press SETUP to go to the next sub-menu. It should be appearing "1.4 L".

In order to calibrate the controller, press the CCW button to turn the rotator to a counter-clockwise point (the closer to the rotator's end-of-track - the closer to 0 -, the better).
You may notice as you turn the rotator CCW that the display shows a number that is descending, this number is not the azimuth. This number is the variation of the potentiometer and it ranges from $\mathbf{0}$ to 500 approximately, meaning ~ 0 is the CCW rotator's end-of-track and ~ 500 is the CW rotator's end-of-track. These values can be higher for the CCW end of track or lower for the CW end-of-track depending on the wire resistance.
After you turned to a point near the CCW rotator's end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer to set this azimuth.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
10. Press SETUP to go to the next sub-menu. It should be appearing " $1.5 \mathbf{R}$ ".

Press the CW button to turn the rotator to a clockwise point (the closer to the rotator's end-of-track - the closer to 500 -, the better).
After you turned to a point near the CW rotator's end-of-track (~ 500), stop the rotation, check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer to insert this azimuth.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
11. Press SETUP to go to the next sub-menu. It should be appearing "1.6 OL". In this sub-menu. you need to tell if there was an overlap on the rotation you just made.
If when you moved the rotator to the right (CW) and you turned the rotator more than 360° from the CCW point, there has been an Overlap.
If an overlap happened as described above, use the potentiometer POS to select the option YES. If an overlap did not happen, select the option NO.
For Hy-Gain rotators, this option is usually selected "NO" as they don't overlap.
Hold the button GO until the screen blinks to save the selected option.
12. The configuration and calibration is now complete. Press setup multiple times to leave the menu.

9 Configuration for HyGain HDR-300

9.1 Jumpers and connections

- Remove the jumper J5.
- Place the yellow wire and the red wire with the aerial fuse on the borne P4 marked as AC as shown on the picture.
- Remove the jumper from J2 and insert it on J4 as shown on the picture.

9.2 Connecting the controller to the rotator

Connect the controller to the rotator following the table below.

Figure 18: RA-S1 Connector

Table 10: Wire by wire - HyGain HDR 300A

Rotator HyGain HDR 300A	RA-S1 Controller
1	M-CCW
2	M-CW
3	GND
4	BRK
5	GND
6	POT
7	REF

9.3 Firmware configuration and calibration

After configuring the jumpers and setting up the connection between controller and rotator we will now configure its program. For that, turn on the controller and follow the detailed steps bellow.

1. Hold the SETUP button until the controller displays " 1 CAL"
2. Press the button GO to enter this menu. It should be displaying "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 AC". Hold the button GO until the screen blinks to save this option.
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5. Turn the potentiometer POS until it appears on the screen "1.2 POT".

Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".

Turn the potentiometer POS until it appears on the screen "1.3 YES".
Hold the button GO until the screen blinks to save this option.
7. Press SETUP to go to the next sub-menu. It should be appearing " 1.4 L ".

In order to calibrate the controller, press the CCW button to turn the rotator to a point to the left (the closer to the rotator's end-of-track - the closer to 0 shown on the screen-, the better).
You may notice as you turn the rotator CCW that the display shows a number that is descending, this number is not the azimuth. This number is the variation of the potentiometer and it ranges from $\mathbf{0}$ to $\mathbf{1 0 0 0}$ approximately, meaning ~ 0 is the CCW rotator's end-of-track and ~ 1000 is the CW rotator's end-of-track. These values can be higher for the CCW end of track or lower for the CW end-of-track depending on the wire resistance.
After you turned to a point near the CCW rotator's end-of-track, stop the rotation and check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer. With the real azimuth on the screen, hold GO until the screen blinks to save it.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.5 R".

In order to calibrate the controller, press the CW button to turn the rotator to a point to the right (the closer to the rotator's end-of-track - the closer to the 1000 -, the better).
After you turned to a point near the CW rotator's end-of-track, stop the rotation, check the REAL azimuth of the antenna at this point, and put this REAL azimuth on the controller screen using the POS potentiometer.
With the real azimuth on the screen, hold GO until the screen blinks to save it.
9. Press SETUP to go to the next sub-menu. It should be appearing "1.6 OL". In this sub-menu you need to tell if there was an overlap on the rotation you just made. (If when you moved the rotator to the right (CW) and you turned the rotator more than 360° from the CCW point, there has been an Overlap.)
If an overlap occurred as described above, use the potentiometer POS to select the option YES.
If an overlap did not happen, select the option NO.
Hold the button GO until the screen blinks to save this option.
10. The configuration and calibration is now complete. Press setup multiple times to leave the menu.

10 Configuration for M2 Orion 2800 (DC)

10.1 Jumpers and connections

- Remove the jumper on J5.
- Place the red wire (36 V DC) and the red wire with the aerial fuse (0 V) on the borne P3 marked as DC as shown on the picture.
- Insert the Jumpers on J2 and J4 as indicated in the figure.

Figure 19: Board scheme for M2 Orion 2800

10.2 Connecting the Controller to the Rotator

Figure 20: RA-S1 Connector

Figure 21: M2 Orion 2800 wiring diagram

Figure 22: RA-S1 Connector for M2 Orion 2800 (DC)
Following the Orion 2800 wiring diagram connect the controller to the rotator as indicated on the table below.

Table 11: Wire by wire - M2 Orion 2800 / RA-S1

Orion 2800 Rotator	RA-S1 Controller
ORANGE	PULSE (WHITE)
BLUE	PULSE (GREEN)
BLK	M-CW (RED)
WHITE	M-CCW (BLACK)

If the rotator moves in the opposite direction when pressing CW or CCW, switch the BLK and the WHITE wire.

10.3 Firmware configuration and calibration

1. Hold the SETUP button until the controller displays " 1 CAL"
2. Press the button GO to enter this menu. It should be displaying "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 DC2".
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5) Turn the potentiometer POS until it appears on the screen "1.2 PUL".

Hold the button GO until the screen blinks to save this option.
5. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".

Turn the potentiometer POS until it appears on the screen "1.3 NO".
Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.4 ANG".

In order to calibrate the controller, verify the REAL AZIMUTH that the rotator is pointing at. Set this azimuth by turning the potentiometer POS.
With the real azimuth on the screen, hold GO until the screen blinks to save the azimuth you inserted.
7. Press SETUP to go to the next sub-menu. It should be appearing "1.5 PHI".

Here you need to insert the how many pulses (divided by 100) your rotator generates on a full 360° rotation (usually it is on the rotator manual). For the M2 Orion it is 3960 pulses / 360°.
Turn the POS potentiometer until the display shows 39 . With the number 39 on the screen, hold GO until the screen blinks to save the number you inserted.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.6 PLO".

Here you need to insert the how many pulses (tens and units) your rotator generates on a full 360° rotation (usually it is on the rotator manual).
Turn the POS potentiometer until the display shows 60 . With the number 60 on the screen, hold GO until the screen blinks to save the number you inserted.
9. The configuration and calibration is now complete. Press setup multiple times to leave the menu.

10.3.1 Observation for rotators with pulsed feedback

After calibrating you will notice that the point-and-shoot isn't working. This happens because the RA-S1 will only point-and-shoot to positions where you manually turned once with CW or CCW button. So it's recommended after the calibration to manually do a full turn on your rotator using the CW or CCW button.

This is made that way so the controller won't overturn or run onto the end-course.

11 Configuration for AlfaSpid RAK Rotator

11.1 Jumpers and connections

- Remove the jumper from J5.
- Place the yellow wire and the red wire with the in-line fuse holder on the P3 borne marked as DC.
- Insert the Jumpers on J2 and J4 as indicated in the figure.

Figure 23: Board scheme for AlfaSpid Rotators

11.2 Connecting the Controller to the Rotator

Figure 24: RA-S1 Connector

Figure 25: RA-S1 Connector for Alfa Spid RAK Rotators

Table 12: Wire by Wire - Alfa Spid RAK

Alfa Spid RAK Rotator	RA-S1 Controller
1	M-CW (Red)
2	M-CCW (Black)
3	PULSE (White)
4	PULSE-(other) (Green)

11.3 Firmware configuration and calibration

1. Hold the SETUP button until the controller displays " 1 CAL"
2. Press the button $\mathbf{G O}$ to enter this menu. It should be displaying "1.1 TYP".
3. Turn the potentiometer POS until it appears on the screen "1.1 DC2".
4. Press SETUP to go to the next sub-menu. It should appear "1.2 POS".
5) Turn the potentiometer POS until it appears on the screen "1.2 PUL".

Hold the button GO until the screen blinks to save this option.
5. Press SETUP to go to the next sub-menu. It should be appearing "1.3 BRA".

Turn the potentiometer POS until it appears on the screen "1.3 NO".
Hold the button GO until the screen blinks to save this option.
6. Press SETUP to go to the next sub-menu. It should be appearing "1.4 ANG".

In order to calibrate the controller, verify the REAL AZIMUTH that the rotator is pointing at. Set this azimuth by turning the potentiometer POS.
With the real azimuth on the screen, hold GO until the screen blinks to save the azimuth you inserted.
7. Press SETUP to go to the next sub-menu. It should be appearing "1.5 PHI".

Here you need to insert the how many pulses (divided by 100) your rotator generates on a full 360° rotation (usually it is on the rotator manual). For the AlfaSpid RAK it is usually 360 or 720 pulses / 360°.
In this example we will assume that it is 360 pulses / 360° if in your case it is 720 pulses / 360° insert the values accordingly.
Turn the POS potentiometer until the display shows 3 . With the number 3 on the screen, hold GO until the screen blinks to save the number you inserted.
8. Press SETUP to go to the next sub-menu. It should be appearing "1.6 PLO".

Here you need to insert the how many pulses (tens and units) your rotator generates on a full 360° rotation (usually it is on the rotator manual).
Turn the POS potentiometer until the display shows 60 . With the number 60 on the screen, hold GO until the screen blinks to save the number you inserted.
9. The configuration and calibration is now complete. Press setup multiple times to leave the menu.

11.3.1 Observation for rotators with pulsed feedback

If the rotator moves in the opposite direction when pressing CW or CCW, swap the M-CW and the M-CCW wires. After calibrating you will notice that the point-and-shoot isn't working. This happens because the RA-S1 will only point-and-shoot to positions where you manually turned once with CW or CCW button. So it's recommended after the calibration to manually do a full turn on your rotator using the CW or CCW button.

This is made that way so the controller won't overturn or run onto the end-course.

12 Point-and-shoot

To point-and-shoot your rotator to an azimuth, turn the POS potentiometer until this azimuth appears on the screen. With the desired azimuth on the screen press the GO button. Notice that the desired azimuth will disappear from the screen after 4 seconds so, in order to point-and-shoot, you must press the GO button before that. if the rotator has overlap, the RA-S1 will always chose the shortest route to the desired angle.

12.1 Observation for rotators with pulsed feedback (ex: Orion G2800)

After calibrating the rotator you will notice that the point-and-shoot isn't working. This happens because the RA-S1 will only point-and-shoot to positions where you manually turned once with CW or CCW button. So it's recommended after the calibration to manually do a full turn on your rotator using the CW or CCW button.

This is made that way so the controller won't overturn or run onto the end-course.

12.2 Observation for PRO.SIS.TEL

For the Pro.Sis.Tel configuration (menu "1.2 PST"), after the calibration the RA-S1 will only point-and-shoot to positions between the calibration points (azimuths inserted on menu 1.4 and 1.5). In order to reach further azimuths with the point-and-shoot, you must manually reach them using the CCW and CW buttons so the RA-S1 knows it's possible to go there.
(It is recommended to set Soft Limits when using the Pro.Sis. Tel rotator as it do not have mechanical end-courses, for that go to the page 25.)

With the Soft Limits ON the controller will only point-and-shoot to azimuths between the Soft Limits.

13 Setup menu

When pressing the SETUP button for 2 seconds, the controller will enter on menu mode. To navigate through the menus press SETUP.

The display 1 will show the menu number going from 1 to 4 . To enter a menu, press GO.
Table 13 describes the function of each menu.
To navigate through the sub-menus press SETUP. To see the available options turn POS, to save a value hold GO until the screen blinks.

On the sub-menus, the controller will show the saved value after a few seconds represented with a point on the right similar to the image below

Figure 26: Menu 1 with sub-menu 4 displaying a saved value
The table below shows the available menus and its main functions, each menu has its own sub-menus that will be explained in details. Obs: The menu 1 is detailed in the section 4 - Configuration Explained, and for each rotator specifically on the configuration for common rotators sections.

Menu	Display	Function
1	CAL	Calibration
2	SFT	Software-defined limits
3	OFS	Offset azimuth
4	CFG	General configuration

Table 13: Available menus

13.1 Soft Limits

The soft-limits are software-defined limits configured by the user. Define it after the calibration process, if needed.
Its purpose is to define the CCW and CW azimuth limits for the rotator run.
In this menu it is important to do it sequentially. If for some reason you accidentally jump one of the menus, you have to do it again from the " $2.1 \mathbf{r}$ " menu. The steps are explained in details on the table 14, but summarizing: define the CCW limit, then the CW limit then turn ON the Soft Limits.

Menu/Sub-menu	Display	Explanation
2.1	L	Using the CCW button, turn the rotator to the azimuth that you want to set the CCW limit. When you are at the desired azimuth, press GO until the screen blinks. Press SETUP to proceed to the menu 2.2.
2.2	R	Using the CW button, turn the rotator to the azimuth that you want to set the CW limit. When you are at the desired azimuth, press GO until the screen blinks. Press SETUP to proceed to the menu 2.3.
2.3	ON/OFF	After defining the limits, turn ON the Soft limits by turning the POS potentiometer until it shows "ON" on screen, hold the GO button until the screen blinks to save the selected option. If you want to turn OFF the Soft limits, do the same but with the OFF option.

Table 14: Soft limits menu
After the Soft-Limits are defined, the RA-S1 Controller will automatically ramp down the rotator speed to 1 when approaching the soft-limits. When reaching a soft-limit it will stop turning the rotator and will display "LL" when reaching the CCW soft-limit or "rL" when reaching the CW soft-limit.

13.2 Azimuth offset

If your antenna mast has slipped, you can correct the angle the RA-S1 is showing by setting an offset. To do that go to the menu " 3 Ofs".

Menu/Sub-menu	Display	Explanation
3.1	Ang	With the POS potentiometer, insert the correct azimuth the ro- tator is pointing to. Hold the GO button until the screen blinks to save the selected azimuth. The controller will calculate the necessary offset.
3.2	ON/OFF	Turn ON the offset azimuth by turning the POS potentiometer until it shows "ON" on screen, hold the GO button until the screen blinks to save the selected option. If you want to turn OFF the offset compensation, do the same but with the OFF option.

Table 15: Azimuth offset menu

13.3 Configuration menu

Menu	Display	Explanation
4.1	DT	Define the dead-time (reverse delay)
4.2	SP1	Define the minimum speed (Speed when the SPEED potentiometer is 1)
4.3	SP2	Define the maximum speed (Speed when the SPEED potentiometer is 9)
4.4	DBG	Debug mode
4.5	BTL	Bootloader mode

Table 16: Configuration menu

13.3.1 Defining the Dead-Time (menu "4.1 DT")

Dead-Time or reverse-delay is the time that the controller waits to allow the rotator to turn again after it has stopped. It is defined on the menu "4.1 dt".

On the menu 4.1 turn the POS potentiometer to select the desired Dead-Time, the values are in seconds. Hold GO until the screen blinks to save the desired value.

13.3.2 Setting the minimum speed (SP1)

The minimum speed is the lowest speed (lowest voltage) on which your rotator will turn before it stops. It is also the speed that it will turn when the SPEED potentiometer is 1 . To define it:

1. Check if the rotator is turning when the SPEED potentiometer is on 1.
2. If the rotator is turning too slowly (it should be slow, but not too slow) or not turning at all, go to the menu "4.2 SP1" and increment the value of SP1 with the POS potentiometer. Hold GO until the screen blinks to save the desired value.
3. If it is turning too fast, decrease the value of SP1.

It is important to define the minimum speed (SP1) because it is the speed that the controller uses to turn the rotator 15° before the target azimuth when point-and-shooting.

13.3.3 Setting the maximum speed (SP2)

It is also possible to define the speed when the potentiometer SPEED is 9 . To define it go to the menu "4.3 SP2". The possible values are from 5 to 9 . The recommended value is 7 , if you think that the rotator is turning slowly with this setting, increase it, if you think it is turning to fast, decrease it. Don't forget to hold the button GO to save the selected value.

For $24 V$ DC rotators, when SP2 is higher than 7 the voltage output is higher than $24 V D C$. For $36 V D C$ rotators, when SP2 is higher than 7 the voltage output is higher than $36 V D C$.

14 USB Virtual Com Port and Serial Setup

As seen on the section 3, the RA-S1 controller has a USB port and a DB-9F. Both can be used to control the RA-S1 via RS-232.

14.1 Connecting via DB-9F

To control the RA-S1 using the DB-9F port, connect it to the computer serial port or to a USB-to-serial converter. The baud rate must be 9600bps.

14.2 Connecting via USB

It's also possible to control the RA-S1 via USB via the Virtual COM Port it will open. To connect the RA-S1 to the computer it is used a USB-B - USB-A cable (same as used on printers). When the controller is connected to the computer it will automatically find the driver. It is possible to manually install the driver.

14.3 Using the RA-S1 with softwares

The RA-S1 uses the Yaesu GS232 protocol, so you can connect to the RA-S1 and configure the software as if it was a Yaesu controller. The following topics will detail how to use the RA-S1 with the most commonly used programs.

14.3.1 Setup with N1 MM

Open N1MM Rotor, then click on Tools>Setup Rotor.

Figure 27: N1MM with RA-S1 Controller Setup

After selecting "Yaesu" on the COM Port that the RA-S1 is connected press OK.

14.3.2 Setup with PSTRotator

Open PSTRotator and connect it to the RA-S1 COM port by selecting Communication>RS232/TCP Server. Then Azimuth COM Port>Select the COM port in which the RA-S1 is connected.

Figure 28: PSTRotator COM Port configuration
Then click on Setup>Controller>GS232 Yaesu 360 deg.
Obs: Even though your rotator has 450 degree capability select the 360 deg option. The RA-S1 will always choose the closer route if the rotator has overlap.

Figure 29: PSTRotator with RA-S1 Controller Setup

14.3.3 Setup with DX4Win

Open DX4Win, then click on Files $>$ Preferences $>$ Control.

Figure 30: DX4Win with RA-S1 Controller Setup

After selecting "Yaesu" on Type and selecting the COM Port in which the RA-S1 is connected press File>Save Changes and Exit.

14.3.4 Setup with Ham Radio Deluxe

Open HRD Rotator, then configure it following the image below.

Figure 31: DX4Win with RA-S1 Controller Setup
Then press Connect.

15 Errors

The RA-S1 has the capability of detecting two situations that are considered Errors. Those are: when the rotator is not turning to the correct direction and if the rotator is not moving when it should.

15.1 Error EO

Figure 32: Display - Error EO
When E0 shows on the screen, it means that the controller detected that the rotator is not turning to the right direction. When this error shows up, the controller stops turning the rotator. It never stops suddenly. When the error appears, it ramps down the speed until it stops.

15.1.1 E0 Troubleshooting

Check if the rotator is turning clockwise when you press CW and counter-clockwise when pressing CCW. If it's not, invert the \mathbf{M}-CW and \mathbf{M}-CCW wires that are connected from the controller to the rotator. If the error persists even when the rotator is turning to the right direction, invert the wires REF and GND from the potentiometer.

15.2 Error E1

Figure 33: Display - Error E1

When E1 shows on the screen it means the controller detected that the rotator is not moving when it should.
This error can occur because of four reasons:

1. The M-CW and M-CCW wires might be not connected.
2. The feedback wires (POT, REF, GND or PULSE-1, PULSE-2) might be not connected.
3. Rotator is at the end of its race.
4. Problem with the rotator motor or potentiometer.

15.2.1 E1 Troubleshooting

1. Verify the connection of the M-CW, M-CCW wires from the controller to the rotator. If the error persists check the feedback wires: REF, POT and GND or PULSE-1 and PULSE-2.
2. If the error persists and the rotator doesn't turn, verify the rotator motor. If the rotator turns but the error still appear, verify the rotator position feedback.

16 Reset

To reset the controller saved options and reset to factory settings, turn the SPEED potentiometer to 1 (fully to the left) and hold SETUP and GO for approximately ten seconds until "RES" is shown on the display.

The reset cannot be undone. After resetting, it is necessary to recalibrate the rotator using the menu " $C A L$ "

17 Setup lock

To avoid the calibration or options of your controller being changed, it is possible to lock the menu. For that you need to click GO five times. It will appear L on the left display meaning "Locked" if you press GO five times again, it will display "O" meaning "Open", or the controller menu is unlocked.

